Thursday, November 5, 2015

Fotosintesis

Pada awal abad ke-20, para ilmuwan menyadari bahwa fotosintesis dapat dibedakan menjadi dua proses reaksi yang memerlukan cahaya dan reaksi yang tidak memerlukan cahaya. Reaksi yang memerlukan cahaya disebut juga reaksi terang. Reaksi ini secara langsung berhubungan dengan pigmen dan tilakoid di kloroplas. Adapun reaksi yang tidak memerlukan cahaya disebut juga reaksi gelap, terjadi di stroma dan matriks klorofil.
Reaksi terang dan reaksi gelap pada kloroplas
Reaksi terang dan reaksi gelap pada kloroplas

Reaksi Terang


Proses dari reaksi terang adalah pusat fotosintesis. Pusat reaksi tersusun atas molekul klorofil yang dikelilingi oleh molekul lain yang mampu menerima elektron. Pusat reaksi terang disebut fotosistem yang terdiri atas kompleks protein, klorofil, dan pigmen lain yang menyerap cahaya. Fotosistem ini terdapat di membran tilakoid.

Pada tumbuhan dan alga terdapat dua pusat reaksi yang bekerja secara teratur. Pusat reaksi ini ditemukan karena memiliki penyerapan panjang gelombang cahaya yang berbeda. Fotosistem I memiliki penyerapan cahaya maksimum 700 nm, karena pada fotosistem I terdapat pigmen yang dapat menyerap panjang gelombang maksimum 700 nm (p700). Fotosistem II memiliki penyerapan cahaya maksimum 680 nm dengan pigmen yang dapat menyerap panjang gelombang maksimum 680 nm (p680). Meskipun fotosistem I ditemukan lebih dahulu, reaksi transfer elektron berawal dari fotosistem II. Elektron bergerak dari fotosistem II ke fotosistem I.

Ketika cahaya matahari (foton) mengenai fososistem II, akan menyebabkan elektronnya tereksitasi (keluar). Elektron ini akan digantikan oleh elektron hasil hidrolisis dari molekul air. Peristiwa pemecahan molekul air pada fotosintesis ini disebut fotolisis.

Dapat Anda lihat bahwa fotolisis menyediakan elektron (e). Selain itu juga, proses ini menghasilkan oksigen (O2) dan pasangan proton bebas (H+) di dalam tilakoid. Pada reaksi inilah sumber oksigen di bumi dihasilkan.

Bagaimanakah proses fotosintesis selanjutnya? Elektron yang dihasilkan akan memasuki sistem transfer elektron. Reaksi transfer elektron ini dapat dibedakan menjadi reaksi nonsiklik dan reaksi siklik.

Reaksi nonsiklik

Elektron yang tereksitasi dari fotosistem II bergerak melalui rangkaian akseptor elektron, seperti plastoquinon, sitokrom f, dan plastosianin. Pada proses tersebut dilepaskan energi yang ditangkap oleh ADP menjadi ATP. Selanjutnya elektron mencapai fotosistem I.

Seperti fotosistem II, fotosistem I merupakan molekul kompleks yang dapat melepaskan elektron yang dipicu oleh cahaya matahari. Elektron yang terlepas dari fotosistem I segera digantikan oleh elektron dari fotosistem II.


Elektron berenergi tinggi yang dilepaskan fotosistem I akan bergerak melalui rangkaian akseptor elektron baru. Pada akhirnya, elektron tersebut digunakan untuk mereduksi NADP (Nicotinamide Adenine Dinucleotide Phosphate) menjadi NADPH.


Reaksi nonsiklik
Reaksi nonsiklik

Pada reaksi ini, elektron yang dilepas fotosistem I tidak kembali lagi ke fotosistem I. Pembentukan ATP dari reaksi nonsiklik ini disebut juga fotofosforilasi nonsiklik.

Reaksi siklik

Pada beberapa kasus, terjadi pola pergerakan elektron yang berbeda. Pola ini disebut reaksi siklik, karena elektron yang dilepaskan fotosistem I selalu kembali pada fotosistem I. Ketika elektron melalui beberapa akseptor elektron, energi yang dilepaskan digunakan untuk membentuk ADP menjadi ATP.

Reaksi siklik
Reaksi siklik

Pembentukan ATP melalui reaksi siklik disebut juga fotofosforilasi siklik. Reaksi ini dilakukan jika ATP yang dibuat kurang dan banyak terjadi pada bakteri fotoautototrof.

Reaksi Gelap


Reaksi gelap merupakan langkah selanjutnya setelah reaksi terang. Reaksi ini terjadi di stroma kloroplas. Reaksi terang telah menyediakan energi kimia pada stroma kloroplas dalam bentuk ATP dan NADPH. Energi ini akan digunakan untuk menghasilkan glukosa, yaitu hasil akhir reaksi fotosintesis.


Reaksi gelap memerlukan ATP, NADPH, CO2, rangkaian enzim, serta kofaktor yang dapat ditemukan pada stroma kloroplas. Reaksi ini dijelaskan pertama kali oleh Melvin Calvin dan Andrew Benson. Oleh karena itu, reaksi ini disebut juga siklus Calvin-Benson. Perhatikan gambar berikut.

Siklus Calvin-Benson
Siklus Calvin-Benson

Fase Fiksasi


Berdasarkan gambar tersebut, langkah pertama siklus Calvin-Benson adalah fiksasi COdari udara oleh ribulosa bifosfat (RuBP) dengan bantuan enzim rubisko. Fiksasi ini membentuk senyawa beratom C6. Hasil yang tidak stabil tersebut dipecah menjadi 2 senyawa C3 (3-fosfogliserat). Oleh karena itu, setiap 3 molekul CO2 yang masuk akan menghasilkan enam molekul 3-fosfogliserat.

Fase Reduksi


Pada fase reduksi, NADPH mereduksi 3-fosfogliserat menjadi 3-fosfogliseraldehid (G3P) dengan bantuan ATP. Untuk membuat 1 molekul G3P, siklus tersebut memerlukan atom karbon dari tiga molekul CO2.
Sebenarnya siklus ini mengambil satu karbon setiap satu siklusnya. Namun pada awal reaksi, digunakan 3 molekul CO2 sehingga satu siklus reaksi ini menghasilkan 1 molekul G3P utuh.

Pelepasan satu molekul G3P


Lima molekul G3P dari langkah kedua tetap berada dalam siklus. Satu molekul G3P yang dilepaskan dari siklus merupakan hasil bersih fotosintesis. Sel tumbuhan menggunakan dua molekul G3P untuk membentuk satu molekul glukosa.

Fase regenerasi RuBP



Rangkaian reaksi kimia menggunakan energi ATP untuk menyusun kembali atom pada lima molekul G3P (total 15 atom C). Hal tersebut untuk membentuk tiga molekul RuBP yang akan digunakan kembali dalam siklus Calvin-Benson.